

Collaborative WRF-based research and education enabled by software containers

J. Hacker, J. Exby, K. Fossell

National Center for Atmospheric Research

Contributions from Tim See (U. North Dakota)

Why the Weather Research and Forecasting (WRF) model in Docker?

- WRF is a state-of-the science numerical weather prediction (NWP) model for operations and research
- Compilation and execution can be an intensive effort, slowing time to results
 - Huge complex code
 - Numerous and non-trivial dependencies
 - Inexperienced users can take months to get WRF running for results
- Classroom opportunities for hands-on numerical weather prediction can be intensive to produce
- Research is almost never reproducible
- Collaboration is difficult and cumbersome

Goals of WRF-Docker

- Lower the technical difficulty for new users
 - Graduate students can accomplish early results simultaneous to learning the Unix/Linux skills needed for more in-depth work
 - Provide a reference context
- Trivialize classroom and lab experimentation
- Provide a platform for reproducible numerical weather prediction research
- Facilitate efficient and easy collaboration

WRF in a container is not a black box.

Not a turn-key approach

- Important use cases in an education
 - Change input data sets for land use
 - Change input data sets for initial and boundary conditions
 - Change physics, diffusion, time steps, etc
 - Change code and recompile in known environment

Our container development allows all of these, including deployments on cloud providers or local compute hardware.

Vision: End to end

Run on your command line and link to your filesystem

Bit-wise reproducibility

Incomplete list of test platforms

OS	Chip/CPU	Cores
OS X 10.10.5	Intel Xeon E5	6
OS X 10.9.5	Intel Core i7	2
Ubuntu 14.04	AMD Opteron 6320	16
Ubuntu 14.04	Intel Xeon E5	16
RHEL	Intel Xeon X5550	8
*Ubuntu 14.04	Intel Xeon E5-2666 v3	32
**Ubuntu 14.04	AWS EC2 Intel Atom C2550 Packet Tiny Atom	4

University of North Dakota Classroom Implementation

- Access Docker-WRF through Amazon Web Services.
- Students completed a classroom assignments to create an ensemble output of a tornadic supercell over North Dakota.
- Students personally changed the parameterization schemes within WRF.
- Classroom discussion generated through changing of parameterizations.
- Sample Plots below

Accumulated Precipitation

From Tim See, UND)

Surface Analysis

Surface Temperature (F)

University of North Dakota Classroom Implementation

- Total Cost for Homework Assignment: \$40.21 over 11 days
 - Inflated cost due to not shutting down instances properly first day.
- Reproducibility of Docker allows for plots to remain the same across all students.

From Tim See, UND)

Dynamic pull of terrestrial data sets (WPS_GEOG) – work in progress

Current practice

Downsides:

- Required to download and store entire datasets and unnecessary data
- Not conducive to cloud or container environments
- Large files to store and transfer
- Costs (\$) associated with storing or downloading/transferring data in cloud
- Computational inefficiencies in containers due to size of files

Dynamic pull of terrestrial data sets (WPS_GEOG) – work in progress

Current practice

Using a relatively "modern" laptop, workstation, server. Linux, Mac, Windows:

- 1. Install docker for free ! <u>https://docker.com/products/</u>
- 2. git clone <u>https://github.com/NCAR/container-wrf</u> (Hurricane Sandy and Katrina)
- 3. cd 3.7.1/demos/local ; docker-compose up
 - (psssst. Windows users- please first edit docker-compose.yml for output DIR)

VOILA!

 So a University professor gives their student a dollar to "do some atmospheric science" in one hour, then write a paper to help toward graduation!

• Is this possible?

• ♠ ♥ \$ 1 ♥ ★ AWS > □ □ \$ \$ \$ \$ 1 ♥ ★ \ \ \ 88(10 \$ \$) ₩ ↓ ₩ ₩ ₩ \$ \$ \$ \$ \$ \$ \$ \$ \$

Demo Architecture

gray arrows = local laptop directory, exposed to Docker

RED arrows = Docker data volumes

32 core WRF run on AWS

- script to spin up a new AWS resource for our compute ac cess only
- script to launch the docker-compose.yml elements:
 - two containers with data
 - a container with wrf executables
 - a container with NCL scripts to post process
 - copy files from AWS back to macbook
- visualize results on macbook pro.

Live Demo Time

• Fingers crossed wifi is fast!

Dynamic data query for smaller downloads

• AWS Batch

Singularity and Swarms

NCAR Resources

- NCAR RAL Docker-WRF Project Web site:
- <u>https://www.ral.ucar.edu/projects/ncar-docker-wrf</u>
- NCAR Github repo: https://github.com/NCAR/container-wrf
- NCAR Dockerhub repo: <u>https://hub.docker.com/r/bigwxwrf/</u>
- bigwxwrf/ncar-wrf

NCAR

UCAR

- bigwxwrf/ncar-wpsgeog
- bigwxwrf/ncar-wrfinputkatrina

bigwxwrf/ncar-ncl bigwxwrf/ncar-wrfinputsandy bigwxwrf/ubc-wrf

air • planet • peo

- Slack channel for docker-wrf community discussion.
- email: <u>exby@ucar.edu</u> for invitations
- <u>https://ncar-dockerwrf.slack.com</u>

Docker WRF at NCAR/RAL